The investigation of the relationships between litter decomposition and polycyclic aromatic hydrocarbons (PAHs) is important to shed light not only on the effects of these pollutants on fundamental ecosystem processes, such as litter decomposition, but also on the degradation of these pollutants by soil microbial community. This allows to understand the effect of atmospheric PAH contamination on soil PAH content via litterfall. At this aim, we studied mass and PAH dynamics of Quercus ilex leaf litters collected from urban, industrial and remote sites, incubated in mesocosms under controlled conditions for 361 d. The results highlighted a litter decomposition rate of leaves sampled in urban > industrial > remote sites; the faster decomposition of litter of the urban site is also related to the low C/N ratio of the leaves. The PAHs showed concentrations at the beginning of the incubation of 887, 650 and 143 ng g-1 d.w., respectively in leaf litters from urban, industrial and remote sites. The PAHs in litter decreased along the time, with the same trend observed for mass litter, showing the highest decrease at 361 d for the urban leaf litter. Anyway, PAH dynamics in all the litters exhibited two phases of loss, separated by a PAH increase observed at 246 d and mainly linked to benzo[e]pyrene.
PAHs in decaying Quercus ilex leaf litter: mutual effects on litter decomposition and PAH dynamics
BALDANTONI, Daniela;ALFANI, Anna
2014-01-01
Abstract
The investigation of the relationships between litter decomposition and polycyclic aromatic hydrocarbons (PAHs) is important to shed light not only on the effects of these pollutants on fundamental ecosystem processes, such as litter decomposition, but also on the degradation of these pollutants by soil microbial community. This allows to understand the effect of atmospheric PAH contamination on soil PAH content via litterfall. At this aim, we studied mass and PAH dynamics of Quercus ilex leaf litters collected from urban, industrial and remote sites, incubated in mesocosms under controlled conditions for 361 d. The results highlighted a litter decomposition rate of leaves sampled in urban > industrial > remote sites; the faster decomposition of litter of the urban site is also related to the low C/N ratio of the leaves. The PAHs showed concentrations at the beginning of the incubation of 887, 650 and 143 ng g-1 d.w., respectively in leaf litters from urban, industrial and remote sites. The PAHs in litter decreased along the time, with the same trend observed for mass litter, showing the highest decrease at 361 d for the urban leaf litter. Anyway, PAH dynamics in all the litters exhibited two phases of loss, separated by a PAH increase observed at 246 d and mainly linked to benzo[e]pyrene.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.