Given a social network represented by a graph G, we consider the problem of finding a bounded cardinality set of nodes S with the property that the influence spreading from S in G is as large as possible. The dynamics that govern the spread of influence is the following: initially only elements in S are influenced; subsequently at each round, the set of influenced elements is augmented by all nodes in the network that have a sufficiently large number of already influenced neighbors. While it is known that the general problem is hard to solve — even in the approximate sense — we present exact polynomial time algorithms for trees, paths, cycles, and complete graphs.

How to go Viral: Cheaply and Quickly

GARGANO, Luisa;VACCARO, Ugo
2014-01-01

Abstract

Given a social network represented by a graph G, we consider the problem of finding a bounded cardinality set of nodes S with the property that the influence spreading from S in G is as large as possible. The dynamics that govern the spread of influence is the following: initially only elements in S are influenced; subsequently at each round, the set of influenced elements is augmented by all nodes in the network that have a sufficiently large number of already influenced neighbors. While it is known that the general problem is hard to solve — even in the approximate sense — we present exact polynomial time algorithms for trees, paths, cycles, and complete graphs.
2014
9783319078892
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4367453
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact