We consider the Schroedinger type operator ${mathcal A}=(1+|x|^{alpha})Delta-|x|^{eta}$, for $alpha in [0,2]$ and $eta ge 0$. We prove that, for any $p in (1,infty)$, the minimal realization of operator ${mathcal A}$ in $L^p(R^N)$ generates a strongly continuous analytic semigroup $(T_p(t))_{t ge 0}$. For $alpha in [0,2)$ and $eta ge 2$, we then prove some upper estimates for the heat kernel $k$ associated to the semigroup $(T_p(t))_{t ge 0}$. As a consequence we obtain an estimate for large $|x|$ of the eigenfunctions of ${mathcal A}$. Finally, we extend such estimates to a class of divergence type elliptic operators.

On Schroedinger type operators with unbounded coefficients: Generation and heat kernel estimates

RHANDI, Abdelaziz
2015

Abstract

We consider the Schroedinger type operator ${mathcal A}=(1+|x|^{alpha})Delta-|x|^{eta}$, for $alpha in [0,2]$ and $eta ge 0$. We prove that, for any $p in (1,infty)$, the minimal realization of operator ${mathcal A}$ in $L^p(R^N)$ generates a strongly continuous analytic semigroup $(T_p(t))_{t ge 0}$. For $alpha in [0,2)$ and $eta ge 2$, we then prove some upper estimates for the heat kernel $k$ associated to the semigroup $(T_p(t))_{t ge 0}$. As a consequence we obtain an estimate for large $|x|$ of the eigenfunctions of ${mathcal A}$. Finally, we extend such estimates to a class of divergence type elliptic operators.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4369453
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 22
social impact