In this work, blends of alginate/pluronic (F127) for biomedical applications were investigated. In particular, the kinetics of alginate chain reticulation by bivalent cationswas studied by experimental and modeling approaches. Two kinds of sodium alginate were tested to obtain hard gel films. The thicknesses of the reticulated alginate films were measured as function of the exposure time and of the reticulating copper (Cu2+) solution concentration. The kinetics was described by a proper model able to reproduce the experimental data. The model parameters, evaluated based on the measurements of thicknesses as function of Cu2+ concentration and exposure time, were further validated by comparing the prediction of the modelwith another set of independent measurement; here, the depletion of Cu2+ ions in the conditioning solution above the reacting gel is measured as function of time. The tuned model could be used in the description of the future applications of the blends.

Modeling of the reticulation kinetics of alginate/pluronic blends for biomedical applications

BARBA, Anna Angela;LAMBERTI, Gaetano;
2014

Abstract

In this work, blends of alginate/pluronic (F127) for biomedical applications were investigated. In particular, the kinetics of alginate chain reticulation by bivalent cationswas studied by experimental and modeling approaches. Two kinds of sodium alginate were tested to obtain hard gel films. The thicknesses of the reticulated alginate films were measured as function of the exposure time and of the reticulating copper (Cu2+) solution concentration. The kinetics was described by a proper model able to reproduce the experimental data. The model parameters, evaluated based on the measurements of thicknesses as function of Cu2+ concentration and exposure time, were further validated by comparing the prediction of the modelwith another set of independent measurement; here, the depletion of Cu2+ ions in the conditioning solution above the reacting gel is measured as function of time. The tuned model could be used in the description of the future applications of the blends.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4378453
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact