In the present paper, a numerical finite element model of the precipitation hardenable AA2024-T3 aluminum alloy, consisting of a heat transfer analysis based on the Thermal Pseudo Mechanical model for heat generation, and a sequentially coupled quasi-static stress analysis is proposed. Metallurgical softening of the material is properly considered and included in the calculations by means of the Myhr and Grong model, implemented as a user subroutine in ABAQUS. Numerical outcomes are compared with experimental results, highlighting the intriguing predictive capabilities of the model for both temperatures and residual stresses. The contour method is employed to map the longitudinal residual stress distribution on a transverse cross section of the joint. The influence of the applied
Numerical modeling of AA2024-T3 friction stir welding process for residual stress evaluation, including softening effects
CARLONE, PIERPAOLO;PALAZZO, Gaetano Salvatore;
2014-01-01
Abstract
In the present paper, a numerical finite element model of the precipitation hardenable AA2024-T3 aluminum alloy, consisting of a heat transfer analysis based on the Thermal Pseudo Mechanical model for heat generation, and a sequentially coupled quasi-static stress analysis is proposed. Metallurgical softening of the material is properly considered and included in the calculations by means of the Myhr and Grong model, implemented as a user subroutine in ABAQUS. Numerical outcomes are compared with experimental results, highlighting the intriguing predictive capabilities of the model for both temperatures and residual stresses. The contour method is employed to map the longitudinal residual stress distribution on a transverse cross section of the joint. The influence of the appliedI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.