In the k-labeled Spanning Forest Problem (kLSF), given a graph G with a label (color) assigned to each edge, and an integer positive value kmax we look for the minimum number of connected components that can be obtained by using at most kmax different labels. The problem is strictly related to the Minimum Labelling Spanning Tree Problem (MLST), since a spanning tree of the graph (i.e. a single connected component) would obviously be an optimal solution for the kLSF, if it can be obtained without violating the bound on kmax. In this work we present heuristic and exact approaches to solve this new problem.

The k-labeled Spanning Forest Problem

CERULLI, Raffaele;GENTILI, Monica;RAICONI, ANDREA
2014

Abstract

In the k-labeled Spanning Forest Problem (kLSF), given a graph G with a label (color) assigned to each edge, and an integer positive value kmax we look for the minimum number of connected components that can be obtained by using at most kmax different labels. The problem is strictly related to the Minimum Labelling Spanning Tree Problem (MLST), since a spanning tree of the graph (i.e. a single connected component) would obviously be an optimal solution for the kLSF, if it can be obtained without violating the bound on kmax. In this work we present heuristic and exact approaches to solve this new problem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4416053
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact