We study groups in which normality is a weakly transitive relation,giving an extension of Theorem A [On finiteT-groups, J. Aust. Math.Soc.75(2003)181–191] due to 17 Ballester-Bolinches and Esteban-Romero. Moreover,we extend a well-19 known theorem of Peng [Finite groups with pro-normal subgroups, Proc.Amer.Math.20Soc.20(1969)232–234]provingthatforalargeclassofgeneralizedFC-groupstheweak21transitivityofnormalityisequivalenttohavingfinitelymanymaximalpronormalizers22ofsubgroups

Groups in which normality is a weakly transitive relation

ROMANO, EMANUELA;VINCENZI, Giovanni
2015-01-01

Abstract

We study groups in which normality is a weakly transitive relation,giving an extension of Theorem A [On finiteT-groups, J. Aust. Math.Soc.75(2003)181–191] due to 17 Ballester-Bolinches and Esteban-Romero. Moreover,we extend a well-19 known theorem of Peng [Finite groups with pro-normal subgroups, Proc.Amer.Math.20Soc.20(1969)232–234]provingthatforalargeclassofgeneralizedFC-groupstheweak21transitivityofnormalityisequivalenttohavingfinitelymanymaximalpronormalizers22ofsubgroups
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4420454
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact