A model of cancer growth based on the Gompertz stochastic process with jumps is proposed to analyze the effect of a therapeutic program that provides intermittent suppression of cancer cells. In this context, a jump represents an application of the therapy that shifts the cancer mass to a return state and it produces an increase in the growth rate of the cancer cells. For the resulting process, consisting in a combination of different Gompertz processes characterized by different growth parameters, the first passage time problem is considered. A strategy to select the inter-jump intervals is given so that the first passage time of the process through a constant boundary is as large as possible and the cancer size remains under this control threshold during the treatment. A computational analysis is performed for different choices of involved parameters. Finally, an estimation of parameters based on the maximum likelihood method is provided and some simulations
A Stochastic Model of Cancer Growth Subject to an Intermittent Treatment with Combined Effects: Reduction of Tumor Size and Raise of Growth Rate
SPINA, SERENA;GIORNO, Virginia;
2014-01-01
Abstract
A model of cancer growth based on the Gompertz stochastic process with jumps is proposed to analyze the effect of a therapeutic program that provides intermittent suppression of cancer cells. In this context, a jump represents an application of the therapy that shifts the cancer mass to a return state and it produces an increase in the growth rate of the cancer cells. For the resulting process, consisting in a combination of different Gompertz processes characterized by different growth parameters, the first passage time problem is considered. A strategy to select the inter-jump intervals is given so that the first passage time of the process through a constant boundary is as large as possible and the cancer size remains under this control threshold during the treatment. A computational analysis is performed for different choices of involved parameters. Finally, an estimation of parameters based on the maximum likelihood method is provided and some simulationsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.