In this paper, an efficient and accurate computational method based on the Legendre wavelets (LWs) is proposed for solving the time fractional diffusion-wave equation (FDWE). To this end, a new fractional operational matrix (FOM) of integration for the LWs is derived. The LWs and their FOM of integration are used to transform the problem under consideration into a linear system of algebraic equations, which can be simply solved to achieve the solution of the problem. The proposed method is very convenient for solving such problems, since the initial and boundary conditions are taken into account automatically.

Wavelets method for the time fractional diffusion-wave equation

CATTANI, Carlo
2014

Abstract

In this paper, an efficient and accurate computational method based on the Legendre wavelets (LWs) is proposed for solving the time fractional diffusion-wave equation (FDWE). To this end, a new fractional operational matrix (FOM) of integration for the LWs is derived. The LWs and their FOM of integration are used to transform the problem under consideration into a linear system of algebraic equations, which can be simply solved to achieve the solution of the problem. The proposed method is very convenient for solving such problems, since the initial and boundary conditions are taken into account automatically.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4525519
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact