The organic phosphazene superbase, 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)phosphoranylid-enamino]-2λ5,4λ5-catenadi(phosphazene) (t-Bu-P4), is found to directly initiate high-speed polymerization of the biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL), in contrast to other polymerization systems using t-Bu-P4 which typically require addition of an organic acid or a nucleophile as a co-initiating component. This MMBL polymerization by t-Bu-P4 alone is extremely rapid; even with a low t-Bu-P4 loading of 0.1 mol% or 0.02 mol%, quantitative monomer conversion is achieved in 20 s or 1 min, respectively, affording medium to high molecular weight PMMBL bioplastics in a catalytic fashion. The combined experimental and theoretical/computational studies have yielded mechanisms of chain initiation through abstraction of a proton from a monomer by t-Bu-P4, essentially barrier-less chain propagation through rapid conjugate addition of the enolate anion stabilized by the nano-size cation [t-Bu-P4H]+ to the monomer, and chain termination through chain transfer to the monomer which generates a saturated termination chain end and the [t-Bu-P4H]+-stabilized anionic active species that starts a new chain.

High-speed organocatalytic polymerization of a renewable methylene butyrolactone by a phosphazene superbase

FALIVENE, LAURA;CAPORASO, Lucia;CAVALLO, LUIGI;
2014

Abstract

The organic phosphazene superbase, 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)phosphoranylid-enamino]-2λ5,4λ5-catenadi(phosphazene) (t-Bu-P4), is found to directly initiate high-speed polymerization of the biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL), in contrast to other polymerization systems using t-Bu-P4 which typically require addition of an organic acid or a nucleophile as a co-initiating component. This MMBL polymerization by t-Bu-P4 alone is extremely rapid; even with a low t-Bu-P4 loading of 0.1 mol% or 0.02 mol%, quantitative monomer conversion is achieved in 20 s or 1 min, respectively, affording medium to high molecular weight PMMBL bioplastics in a catalytic fashion. The combined experimental and theoretical/computational studies have yielded mechanisms of chain initiation through abstraction of a proton from a monomer by t-Bu-P4, essentially barrier-less chain propagation through rapid conjugate addition of the enolate anion stabilized by the nano-size cation [t-Bu-P4H]+ to the monomer, and chain termination through chain transfer to the monomer which generates a saturated termination chain end and the [t-Bu-P4H]+-stabilized anionic active species that starts a new chain.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4525523
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 24
social impact