In this paper we consider the propagation of Rayleigh surface waves in an exponentially graded half-space made of an isotropic Kelvin-Voigt viscoelastic material. Here we take into account the effect of the viscoelastic dissipation energy upon the corresponding wave solutions. As a consequence we introduce the damped in time wave solutions and then we treat the Rayleigh surface wave problem in terms of such solutions. The explicit form of the secular equation is obtained in terms of the wave speed and the viscoelastic inhomogeneous profile. Furthermore, we use numerical methods and computations to solve the secular equation for some special homogeneous materials. The results sustain the idea, existent in literature on the argument, that there is possible to have more than one surface wave for the Rayleigh wave problem. © 2013 Springer Science+Business Media Dordrecht.

Rayleigh surface waves on a kelvin-voigt viscoelastic half-space

CHIRITA, STAN;CIARLETTA, Michele;TIBULLO, VINCENZO
2014

Abstract

In this paper we consider the propagation of Rayleigh surface waves in an exponentially graded half-space made of an isotropic Kelvin-Voigt viscoelastic material. Here we take into account the effect of the viscoelastic dissipation energy upon the corresponding wave solutions. As a consequence we introduce the damped in time wave solutions and then we treat the Rayleigh surface wave problem in terms of such solutions. The explicit form of the secular equation is obtained in terms of the wave speed and the viscoelastic inhomogeneous profile. Furthermore, we use numerical methods and computations to solve the secular equation for some special homogeneous materials. The results sustain the idea, existent in literature on the argument, that there is possible to have more than one surface wave for the Rayleigh wave problem. © 2013 Springer Science+Business Media Dordrecht.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4532857
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact