The onset of two-dimensional instabilities in the flow past two side-by-side circular cylinders is numerically investigated in the ranges 0.1 ≤ g ≤ 3 and Re <100, with g being the non-dimensional gap spacing between the surfaces of the two cylinders and Re the Reynolds number. A comprehensive, global stability analysis of the symmetric base flow is carried out, indicating that three harmonic modes and one steady antisymmetric mode become unstable at different values of g and Re. These modes are known to promote distinct flow regimes at increasing values of g: single bluff-body, asymmetric, in-phase and antiphase synchronized vortex shedding. For each mode, the inherent structural sensitivity is examined in order to identify the core region of the related instability mechanism. In addition, by exploiting the structural sensitivity analysis to base flow modifications, a passive control strategy is proposed for the simultaneous suppression of the two synchronized shedding modes using two small secondary cylinders. Its effectiveness is then validated a posteriori by means of direct numerical simulations.

First instability and structural sensitivity of the flow past two side-by-side cylinders

GIANNETTI, FLAVIO;AUTERI, FRANCO
2014-01-01

Abstract

The onset of two-dimensional instabilities in the flow past two side-by-side circular cylinders is numerically investigated in the ranges 0.1 ≤ g ≤ 3 and Re <100, with g being the non-dimensional gap spacing between the surfaces of the two cylinders and Re the Reynolds number. A comprehensive, global stability analysis of the symmetric base flow is carried out, indicating that three harmonic modes and one steady antisymmetric mode become unstable at different values of g and Re. These modes are known to promote distinct flow regimes at increasing values of g: single bluff-body, asymmetric, in-phase and antiphase synchronized vortex shedding. For each mode, the inherent structural sensitivity is examined in order to identify the core region of the related instability mechanism. In addition, by exploiting the structural sensitivity analysis to base flow modifications, a passive control strategy is proposed for the simultaneous suppression of the two synchronized shedding modes using two small secondary cylinders. Its effectiveness is then validated a posteriori by means of direct numerical simulations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4559457
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact