Kinetic analysis of the olive pomace thermal degradation in the temperature range of interest for torrefaction was performed by using non-isothermal thermogravimetric measurements at different heating rates, ranging from 2 to 40 degrees C/min. A comparison is presented between two selected integral isoconversional methods, i.e., the nonlinear Vyazovkin incremental approach, which is more accurate but time-consuming, and the linear Ozawa-Flynn-Wall (OFW) method, which is less accurate but computationally simpler. Results show that the values of the activation energy by the OFW method are consistent with the ones provided by the Vyazovkin approach. This implies that the OFW method, more user-friendly compared to the Vyazovkin procedure, is suitable for studying the torrefaction kinetics of residual biomass, such as olive pomace. The reliability of the OFW method was further confirmed by the successful application of the derived kinetic data to reproduce (i.e., predict) experimental TG curves not included in the kinetic computations.

Isoconversional kinetic analysis of olive pomace decomposition under torrefaction operating conditions

BRACHI, PAOLA;MICCIO, Michele;
2015

Abstract

Kinetic analysis of the olive pomace thermal degradation in the temperature range of interest for torrefaction was performed by using non-isothermal thermogravimetric measurements at different heating rates, ranging from 2 to 40 degrees C/min. A comparison is presented between two selected integral isoconversional methods, i.e., the nonlinear Vyazovkin incremental approach, which is more accurate but time-consuming, and the linear Ozawa-Flynn-Wall (OFW) method, which is less accurate but computationally simpler. Results show that the values of the activation energy by the OFW method are consistent with the ones provided by the Vyazovkin approach. This implies that the OFW method, more user-friendly compared to the Vyazovkin procedure, is suitable for studying the torrefaction kinetics of residual biomass, such as olive pomace. The reliability of the OFW method was further confirmed by the successful application of the derived kinetic data to reproduce (i.e., predict) experimental TG curves not included in the kinetic computations.
File in questo prodotto:
File Dimensione Formato  
Brachi et al_FuelProcTech (1-s2.0-S0378382014004159).pdf

non disponibili

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 742.4 kB
Formato Adobe PDF
742.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
496 MICCIO Post-print.pdf

embargo fino al 31/12/2016

Descrizione: https://dx.doi.org/10.1016/j.fuproc.2014.09.043
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4594457
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 62
social impact