We discuss the optimal control problem stated as the minimization in the $L^2$-sense of the mismatch between the actual out-flux and a demand forecast for a hyperbolic conservation law that models a highly re-entrant production system. The output of the factory is described as a function of the work in progress and the position of the switch dispatch point (SDP) where we separate the beginning of the factory employing a push policy from the end of the factory, which uses a quasi-pull policy. The main question we discuss in this paper is about the optimal choice of the input in-flux, push and quasi-pull constituents, and the position of SDP.
On Optimization of a Highly Re-Entrant Production System
D'APICE, Ciro;MANZO, Rosanna
2016
Abstract
We discuss the optimal control problem stated as the minimization in the $L^2$-sense of the mismatch between the actual out-flux and a demand forecast for a hyperbolic conservation law that models a highly re-entrant production system. The output of the factory is described as a function of the work in progress and the position of the switch dispatch point (SDP) where we separate the beginning of the factory employing a push policy from the end of the factory, which uses a quasi-pull policy. The main question we discuss in this paper is about the optimal choice of the input in-flux, push and quasi-pull constituents, and the position of SDP.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.