The availability of remotely sensed image sequences characterized by both spatial and temporal high resolution is crucial in many applications, ranging from agriculture to Earth surface hazard monitoring. To date, image sequences presenting such desirable characteristics in both domains are not directly obtainable by a single device and thus a viable solution is represented by the joint use of multisensor information. In this work, we propose a solution, based on Bayesian sequential estimation, for fusing two image sequences characterized by complementary features. Together with the assessment of two different sequential estimation approaches, a novel method for constructing a sharpened observations is presented here. The proposals are then evaluated by employing different datasets acquired by the SEVIRI and MODIS sensors, showing remarkable improvements with respect to classical approaches.

Sequential Bayesian methods for Resolution Enhancement of TIR Image Sequences

ADDESSO, PAOLO;LONGO, Maurizio;RESTAINO, Rocco;VIVONE, GEMINE
2015

Abstract

The availability of remotely sensed image sequences characterized by both spatial and temporal high resolution is crucial in many applications, ranging from agriculture to Earth surface hazard monitoring. To date, image sequences presenting such desirable characteristics in both domains are not directly obtainable by a single device and thus a viable solution is represented by the joint use of multisensor information. In this work, we propose a solution, based on Bayesian sequential estimation, for fusing two image sequences characterized by complementary features. Together with the assessment of two different sequential estimation approaches, a novel method for constructing a sharpened observations is presented here. The proposals are then evaluated by employing different datasets acquired by the SEVIRI and MODIS sensors, showing remarkable improvements with respect to classical approaches.
File in questo prodotto:
File Dimensione Formato  
JSTARS-2013-00666.R1_DefBib_CorrectedLabel.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: DRM non definito
Dimensione 3.45 MB
Formato Adobe PDF
3.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4635458
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact