The aim of the present work is to investigate the influence of the Vacuum Assisted Resin Transfer Molding process steps on the impregnation quality of the laminates as well as on mechanical and tribological properties of the processed material. Composite laminates were realized using epoxy resin reinforced with carbon (CF) or glass continuous (GF) fibers. Two different textile architectures, namely non-crimp fabrics (UD) and woven-mat (0/90), were used and various processing conditions were employed. Optical observations revealed an unexpected trend relatively to the intra and inter bundle voids concentration with respect to the impregnation velocity, especially using UD-CF and UD-GF reinforcements and low impregnation rate. Tensile and three points bending tests highlighted the strong impact of fiber material and architecture on mechanical properties, whereas the presence of voids played a slightly influence on the fiber dominated characteristics analyzed. Tribological outcomes evidenced a reduction of the friction coefficient when the resin is reinforced by carbon or glass fibers as well as when the sliding direction of th counterbody is oriented parallel to the fiber direction.

Mechanical and tribological characterization of composite laminates manufactured by liquid composite molding processes

MEROLA, MASSIMILIANO;CARLONE, PIERPAOLO;RUGGIERO, Alessandro;
2015-01-01

Abstract

The aim of the present work is to investigate the influence of the Vacuum Assisted Resin Transfer Molding process steps on the impregnation quality of the laminates as well as on mechanical and tribological properties of the processed material. Composite laminates were realized using epoxy resin reinforced with carbon (CF) or glass continuous (GF) fibers. Two different textile architectures, namely non-crimp fabrics (UD) and woven-mat (0/90), were used and various processing conditions were employed. Optical observations revealed an unexpected trend relatively to the intra and inter bundle voids concentration with respect to the impregnation velocity, especially using UD-CF and UD-GF reinforcements and low impregnation rate. Tensile and three points bending tests highlighted the strong impact of fiber material and architecture on mechanical properties, whereas the presence of voids played a slightly influence on the fiber dominated characteristics analyzed. Tribological outcomes evidenced a reduction of the friction coefficient when the resin is reinforced by carbon or glass fibers as well as when the sliding direction of th counterbody is oriented parallel to the fiber direction.
2015
9783038354710
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4643537
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact