In search of new options to achieve removal of pharmaceuticals in the environment, combined ultrasound and ozonation has become a focus of intense investigation for wastewater treatment. In this study, three pharmaceuticals were selected as model compounds for degradation experiments: diclofenac (DCF), sulfamethoxazole (SMX) and carbamazepine (CBZ). Comparison of the degradation rates for both ozonation and combined ultrasound/ozonation treatments was performed on single synthetic solutions as well as on a mixture of the selected pharmaceuticals, under different experimental conditions. For single synthetic solutions, the efficiency removal for ozonation reached 73%, 51% and 59% after 40 min for DCF, SMX and CBZ, respectively. Comparable results were obtained for pharmaceuticals in mixture. However, the combined ultrasound/ozone treatment was found to increase degradation efficiencies for both DCF and SMX single solutions up to 94% and 61%, respectively, whereas lower removal yields, up to 56%, was noted for CBZ. Likewise, when the combined treatment was applied to the mixture, relatively low removal efficiencies was found for CBZ (44%) and 90% degradation yield was achieved for DCF.

Enhanced ozonation of selected pharmaceutical compounds by sonolysis

NADDEO, VINCENZO;CESARO, ALESSANDRA;BELGIORNO, Vincenzo;
2015-01-01

Abstract

In search of new options to achieve removal of pharmaceuticals in the environment, combined ultrasound and ozonation has become a focus of intense investigation for wastewater treatment. In this study, three pharmaceuticals were selected as model compounds for degradation experiments: diclofenac (DCF), sulfamethoxazole (SMX) and carbamazepine (CBZ). Comparison of the degradation rates for both ozonation and combined ultrasound/ozonation treatments was performed on single synthetic solutions as well as on a mixture of the selected pharmaceuticals, under different experimental conditions. For single synthetic solutions, the efficiency removal for ozonation reached 73%, 51% and 59% after 40 min for DCF, SMX and CBZ, respectively. Comparable results were obtained for pharmaceuticals in mixture. However, the combined ultrasound/ozone treatment was found to increase degradation efficiencies for both DCF and SMX single solutions up to 94% and 61%, respectively, whereas lower removal yields, up to 56%, was noted for CBZ. Likewise, when the combined treatment was applied to the mixture, relatively low removal efficiencies was found for CBZ (44%) and 90% degradation yield was achieved for DCF.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4643601
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 42
social impact