An investigation on the additive manufacturing and the experimental testing of 3D models of tensegrity prisms and columns is presented. An Electron Beam Melting facility (Arcam EBM S12) is employed to 3D print structures composed of tensegrity prisms endowed with rigid bases and temporary supports, which are made out of the titanium alloy Ti6Al4V. The temporary supports are removed after the additive man- ufacturing phase, when Spectra cross-strings are added to the 3D printed models, and a suitable state of internal prestress is applied to the structure. The experimental part of the study shows that the examined structures feature stiffening-type elastic response under large or moderately large axial strains induced by compressive loading. Such a geometrically nonlinear behavior confirms previous theoretical results available in the literature, and paves the way to the use of tensegrity prisms and columns as innovative mechanical metamaterials and smart devices.
On the additive manufacturing, post-tensioning and testing of bi-material tensegrity structures
AMENDOLA, ADA;FRATERNALI, Fernando
2015
Abstract
An investigation on the additive manufacturing and the experimental testing of 3D models of tensegrity prisms and columns is presented. An Electron Beam Melting facility (Arcam EBM S12) is employed to 3D print structures composed of tensegrity prisms endowed with rigid bases and temporary supports, which are made out of the titanium alloy Ti6Al4V. The temporary supports are removed after the additive man- ufacturing phase, when Spectra cross-strings are added to the 3D printed models, and a suitable state of internal prestress is applied to the structure. The experimental part of the study shows that the examined structures feature stiffening-type elastic response under large or moderately large axial strains induced by compressive loading. Such a geometrically nonlinear behavior confirms previous theoretical results available in the literature, and paves the way to the use of tensegrity prisms and columns as innovative mechanical metamaterials and smart devices.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											J61_COST_2015.pdf
										
																				
									
										
											 non disponibili 
											Tipologia:
											Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
										 
									
									
									
									
										
											Licenza:
											
											
												NON PUBBLICO - Accesso privato/ristretto
												
												
												
											
										 
									
									
										Dimensione
										1.67 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								1.67 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											J59_preprint_COST_2015.pdf
										
																				
									
										
											 accesso aperto 
											Descrizione: Preprint
										 
									
									
									
										
											Tipologia:
											Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
										 
									
									
									
									
										
											Licenza:
											
											
												DRM non definito
												
												
												
											
										 
									
									
										Dimensione
										3.52 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								3.52 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


