The elastic stress and strain fields and effective elasticity of periodic composite materials are determined by imposing a periodic eigenstrain on an homogeneous solid, which is constrained to be equivalent to the heterogeneous composite material through the imposition of a consistency condition. To this end, the variables of the problem are represented by Fourier series and the consistency condition is written in the Fourier space providing the system of equations to solve. The proposed method can be considered versatile as it allows to determine stress and strain fields in micro-scale and overall properties of composites with different kinds of inclusions and defects. In the present work, the method is applied to multi-phase composites containing long fibers with circular transverse section. Numerical solutions provided by the proposed method are compared with finite element results for both unit cell containing a single fiber and unit cell with multiple fibers of different sizes.

Eigenstrain and Fourier series for evaluation of elastic local fields and effective properties of periodic composites

FEO, Luciano;
2015

Abstract

The elastic stress and strain fields and effective elasticity of periodic composite materials are determined by imposing a periodic eigenstrain on an homogeneous solid, which is constrained to be equivalent to the heterogeneous composite material through the imposition of a consistency condition. To this end, the variables of the problem are represented by Fourier series and the consistency condition is written in the Fourier space providing the system of equations to solve. The proposed method can be considered versatile as it allows to determine stress and strain fields in micro-scale and overall properties of composites with different kinds of inclusions and defects. In the present work, the method is applied to multi-phase composites containing long fibers with circular transverse section. Numerical solutions provided by the proposed method are compared with finite element results for both unit cell containing a single fiber and unit cell with multiple fibers of different sizes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4647776
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact