This research aims to study: (1) the crack damage mitigation and shear behavior of reinforced concrete (RC) beams that have been repaired using strain-hardening cement-based composite (SHCC) via experimental testing and (2) the contribution of the SHCC layers to the shear strength of the repaired RC beams via predictions. Five cantilever RC beams with a shear span-to-depth ratio of 2.8 were subjected to cyclic concentrated loading. The study variables include two types of tensile performance of the SHCC (with low or high strength in tension) and two repair methods (patching and layering). The experimental results show that the use of a SHCC layer leads to a substantial increase in the shear strength and ductility of the RC beams after the peak load. During the tests, all of the SHCC repaired beams showed delamination along the interface between the concrete and SHCC, and the shear resistance started to drop. However, the results also indicate that SHCC layers can be effective repair material for enhancing the control of cracking to help protect the concrete from the migration of aggressive agents in severe environments. In order to predict the shear strength of RC beams that have been repaired with SHCC, two methods were used in this study; one is based on Dinh's proposed model that considers the shear strength in both the compression and tension zones, and the other method considers the shear strength of the reinforcement, such as a stirrup or fiber-reinforced polymer (FRP) laminate that considers only the tensile strength across cracks. These two methods were able to predict the contribution of the SHCC layer to the shear strength of the RC beams, and the predicted shear strength values were very similar between the two methods.

Crack damage mitigation and shear behavior of shear-dominant reinforced concrete beams repaired with strain-hardening cement-based composite

FEO, Luciano;
2015

Abstract

This research aims to study: (1) the crack damage mitigation and shear behavior of reinforced concrete (RC) beams that have been repaired using strain-hardening cement-based composite (SHCC) via experimental testing and (2) the contribution of the SHCC layers to the shear strength of the repaired RC beams via predictions. Five cantilever RC beams with a shear span-to-depth ratio of 2.8 were subjected to cyclic concentrated loading. The study variables include two types of tensile performance of the SHCC (with low or high strength in tension) and two repair methods (patching and layering). The experimental results show that the use of a SHCC layer leads to a substantial increase in the shear strength and ductility of the RC beams after the peak load. During the tests, all of the SHCC repaired beams showed delamination along the interface between the concrete and SHCC, and the shear resistance started to drop. However, the results also indicate that SHCC layers can be effective repair material for enhancing the control of cracking to help protect the concrete from the migration of aggressive agents in severe environments. In order to predict the shear strength of RC beams that have been repaired with SHCC, two methods were used in this study; one is based on Dinh's proposed model that considers the shear strength in both the compression and tension zones, and the other method considers the shear strength of the reinforcement, such as a stirrup or fiber-reinforced polymer (FRP) laminate that considers only the tensile strength across cracks. These two methods were able to predict the contribution of the SHCC layer to the shear strength of the RC beams, and the predicted shear strength values were very similar between the two methods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4647780
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 20
social impact