Vacuum Assisted Resin Transfer Molding (VARTM) fabricated FRP laminates generally show significantly small void contents. The apparent difference in void content is generally attributed to the difference in the resin infusion driving force, i.e., vacuum versus injection pressure. In the present study, we contrast the influence of processing parameters on the impregnation quality of FRP laminates. Application of different vacuum pressures (500, 800 and ~103 mbar) during VARTM results in different impregnation velocity due to different compaction levels produced. Composite laminates were realized using epoxy resin reinforced with carbon (CF) or glass continuous (GF) fibers. Two different textile architectures, namely unidirectional non-crimp fabrics (UD) and woven-mat (0/90), were used and various processing conditions were employed. Optical microscope observations revealed an unexpected trend relatively to the intra and inter bundle voids concentration with respect to the impregnation velocity, especially using UD-CF and UD-GF reinforcements and low impregnation rate. Tensile and three point bending tests highlighted the strong impact of fiber material and architecture on mechanical properties, whereas the presence of voids played a slight influence on the fiber dominated characteristics analyzed.

Influence of the impregnation velocity on impregnation quality and mechanical properties of Vacuum Assisted Resin Transfer Moulding (VARTM) materials

MEROLA, MASSIMILIANO;CARLONE, PIERPAOLO
2015-01-01

Abstract

Vacuum Assisted Resin Transfer Molding (VARTM) fabricated FRP laminates generally show significantly small void contents. The apparent difference in void content is generally attributed to the difference in the resin infusion driving force, i.e., vacuum versus injection pressure. In the present study, we contrast the influence of processing parameters on the impregnation quality of FRP laminates. Application of different vacuum pressures (500, 800 and ~103 mbar) during VARTM results in different impregnation velocity due to different compaction levels produced. Composite laminates were realized using epoxy resin reinforced with carbon (CF) or glass continuous (GF) fibers. Two different textile architectures, namely unidirectional non-crimp fabrics (UD) and woven-mat (0/90), were used and various processing conditions were employed. Optical microscope observations revealed an unexpected trend relatively to the intra and inter bundle voids concentration with respect to the impregnation velocity, especially using UD-CF and UD-GF reinforcements and low impregnation rate. Tensile and three point bending tests highlighted the strong impact of fiber material and architecture on mechanical properties, whereas the presence of voids played a slight influence on the fiber dominated characteristics analyzed.
2015
9783038355151
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4648518
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact