A subgroup X of a group G is said to be an H -subgroup if NG(X) ∩ Xg ≤ X for each element g belonging to G. In [M. Bianchi e. a., On finite soluble groups in which normality is a transitive relation, J. Group Theory, 3 (2000), 147–156] the authors showed that finite groups in which every subgroup has the H -property are exactly soluble groups in which normality is a transitive relation. Here we extend this characterization to groups without simple sections.

A CHARACTERIZATION OF SOLUBLE GROUPS IN WHICH NORMALITY IS A TRANSITIVE RELATION

VINCENZI, Giovanni
2017

Abstract

A subgroup X of a group G is said to be an H -subgroup if NG(X) ∩ Xg ≤ X for each element g belonging to G. In [M. Bianchi e. a., On finite soluble groups in which normality is a transitive relation, J. Group Theory, 3 (2000), 147–156] the authors showed that finite groups in which every subgroup has the H -property are exactly soluble groups in which normality is a transitive relation. Here we extend this characterization to groups without simple sections.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4650033
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact