Among the families of iron-based superconductors, the 11-family is one of the most attractive for high field applications at low temperatures. Optimization of the fabrication processes for bulk, crystalline and/or thin film samples is the first step in producing wires and/or tapes for practical high power conductors. Here we present the results of a comparative study of pinning properties in iron-chalcogenides, investigating the flux pinning mechanisms in optimized Fe(Se${}_{1-x}$Te x ) and FeSe samples by current–voltage characterization, magneto-resistance and magnetization measurements. In particular, from Arrhenius plots in magnetic fields up to 9 T, the activation energy is derived as a function of the magnetic field, ${U}_{0}(H),$ whereas the activation energy as a function of temperature, $U(T),$ is derived from relaxation magnetization curves. The high pinning energies, high upper critical field versus temperature slopes near critical temperatures, and highly isotropic pinning properties make iron-chalcogenide superconductors a technological material which could be a real competitor to cuprate high temperature superconductors for high field applications
Titolo: | Vortex pinning properties in Fe-chalcogenides |
Autori: | |
Data di pubblicazione: | 2015 |
Rivista: | |
Abstract: | Among the families of iron-based superconductors, the 11-family is one of the most attractive for high field applications at low temperatures. Optimization of the fabrication processes for bulk, crystalline and/or thin film samples is the first step in producing wires and/or tapes for practical high power conductors. Here we present the results of a comparative study of pinning properties in iron-chalcogenides, investigating the flux pinning mechanisms in optimized Fe(Se${}_{1-x}$Te x ) and FeSe samples by current–voltage characterization, magneto-resistance and magnetization measurements. In particular, from Arrhenius plots in magnetic fields up to 9 T, the activation energy is derived as a function of the magnetic field, ${U}_{0}(H),$ whereas the activation energy as a function of temperature, $U(T),$ is derived from relaxation magnetization curves. The high pinning energies, high upper critical field versus temperature slopes near critical temperatures, and highly isotropic pinning properties make iron-chalcogenide superconductors a technological material which could be a real competitor to cuprate high temperature superconductors for high field applications |
Handle: | http://hdl.handle.net/11386/4651626 |
Appare nelle tipologie: | 1.1.2 Articolo su rivista con ISSN |