This paper investigates the use of the most fundamental elements; cables for tension and bars for compression, in the search for the most efficient bridges. Stable arrangements of these elements are called tensegrity structures. We show herein the minimal mass arrangement of these basic elements to satisfy both yielding and buckling constraints. We show that the minimal mass solution for a simply-supported bridge subject to buckling constraints matches Michell’s 1904 paper which treats the case of only yielding constraints, even though our boundary conditions differ. The necessary and sufficient condition is given for the minimal mass bridge to lie totally above (or below) deck. Furthermore this condition depends only on material properties. If one ignores joint mass, and considers only bridges above deck level, the optimal complexity (number of elements in the bridge) tends toward infinity (producing a material continuum). If joint mass is considered then the optimal complexity is finite. The optimal (minimal mass) bridge below deck has the smallest possible complexity (and therefore cheaper to build), and under reasonable material choices, yields the smallest mass bridge.

Minimum mass and optimal complexity of planar tensegrity bridges

CARPENTIERI, GERARDO;FRATERNALI, Fernando
2015

Abstract

This paper investigates the use of the most fundamental elements; cables for tension and bars for compression, in the search for the most efficient bridges. Stable arrangements of these elements are called tensegrity structures. We show herein the minimal mass arrangement of these basic elements to satisfy both yielding and buckling constraints. We show that the minimal mass solution for a simply-supported bridge subject to buckling constraints matches Michell’s 1904 paper which treats the case of only yielding constraints, even though our boundary conditions differ. The necessary and sufficient condition is given for the minimal mass bridge to lie totally above (or below) deck. Furthermore this condition depends only on material properties. If one ignores joint mass, and considers only bridges above deck level, the optimal complexity (number of elements in the bridge) tends toward infinity (producing a material continuum). If joint mass is considered then the optimal complexity is finite. The optimal (minimal mass) bridge below deck has the smallest possible complexity (and therefore cheaper to build), and under reasonable material choices, yields the smallest mass bridge.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4654804
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? ND
social impact