The paper investigates the effect of model uncertainty on multivariate volatility prediction. Our aim is twofold. First, by means of a Monte Carlo simulation, we assess the accuracy of different techniques in estimating the combination weights assigned to each candidate model. Second, in order to investigate the economic profitability of forecast combination, we present the results of an application to the optimization of a portfolio of US stock returns. Our main finding is that, for both real and simulated data, the results are highly sensitive not only to the choice of the model but also to the specific combination procedure being used.

A comparison of different procedures for combining high-dimensional multivariate volatility forecasts

AMENDOLA, Alessandra;STORTI, Giuseppe
2016

Abstract

The paper investigates the effect of model uncertainty on multivariate volatility prediction. Our aim is twofold. First, by means of a Monte Carlo simulation, we assess the accuracy of different techniques in estimating the combination weights assigned to each candidate model. Second, in order to investigate the economic profitability of forecast combination, we present the results of an application to the optimization of a portfolio of US stock returns. Our main finding is that, for both real and simulated data, the results are highly sensitive not only to the choice of the model but also to the specific combination procedure being used.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4655011
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact