Until now, the policies on sustainability relating to regeneration interventions on historic buildings have dealt with the casing of the buildings in order to regulate and control the flow of air, light and energy from outside to inside and vice versa. However, recent technological developments in home comfort and energy savings highlight the efficiency of the plants and the proper management of the building-plant system, while respecting the criteria of integrated conservation and the multiple constraints that characterize historic buildings. This study proposes a methodological process that identifies the optimal steps from a technical and economical point of view, by providing a combination of traditional architectural conservation interventions with innovative technology systems. The calculation algorithms are developed with a specific software based on UNI TS 11300 regulations, which allows for the thermodynamic modelling of the structure. The preparation of the feasibility plan allows testing the cost-effectiveness of the work proposed, considering the environmental benefits resulting from the reduced CO2 emissions. The impact of the financial results of the evaluation is also analyzed. This protocol provides industry operators a useful instrument for selecting the least expensive initiatives among those compatible with the multiple constraints that affect the design choices.

Costs and Benefits in the Recovery of Historic Buildings: The Application of an Economic Model

NESTICO', ANTONIO;MACCHIAROLI, MARIA;PIPOLO, ORNELLA
2015

Abstract

Until now, the policies on sustainability relating to regeneration interventions on historic buildings have dealt with the casing of the buildings in order to regulate and control the flow of air, light and energy from outside to inside and vice versa. However, recent technological developments in home comfort and energy savings highlight the efficiency of the plants and the proper management of the building-plant system, while respecting the criteria of integrated conservation and the multiple constraints that characterize historic buildings. This study proposes a methodological process that identifies the optimal steps from a technical and economical point of view, by providing a combination of traditional architectural conservation interventions with innovative technology systems. The calculation algorithms are developed with a specific software based on UNI TS 11300 regulations, which allows for the thermodynamic modelling of the structure. The preparation of the feasibility plan allows testing the cost-effectiveness of the work proposed, considering the environmental benefits resulting from the reduced CO2 emissions. The impact of the financial results of the evaluation is also analyzed. This protocol provides industry operators a useful instrument for selecting the least expensive initiatives among those compatible with the multiple constraints that affect the design choices.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4655155
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact