The paper studies differential flatness properties and an input–output linearization procedure for doubly fed induction generators (DFIGs). By defining flat outputs which are associated with the rotor’s turn angle and the magnetic flux of the stator, an equivalent DFIG description in the Brunovksy (canonical) form is obtained. For the linearized canonical model of the generator, a feedback controller is designed. Moreover, a comparison of the differential flatness theory-based controlmethod against Lie algebrabased control is provided. At the second stage, a novel Kalman Filtering method (Derivative-free nonlinear Kalman Filtering) is introduced. The proposed Kalman Filter is redesigned as disturbance observer for estimating additive input disturbances to the DFIG model. These estimated disturbance terms are finally used by a feedback controller that enables the generator’s state variables to track desirable setpoints. The efficiency of the proposed state estimation-based control scheme is tested through simulation experiments.

Control and Disturbances Compensation for Doubly Fed Induction Generators Using the Derivative-Free Nonlinear Kalman Filter

SIANO, PIERLUIGI;
2015-01-01

Abstract

The paper studies differential flatness properties and an input–output linearization procedure for doubly fed induction generators (DFIGs). By defining flat outputs which are associated with the rotor’s turn angle and the magnetic flux of the stator, an equivalent DFIG description in the Brunovksy (canonical) form is obtained. For the linearized canonical model of the generator, a feedback controller is designed. Moreover, a comparison of the differential flatness theory-based controlmethod against Lie algebrabased control is provided. At the second stage, a novel Kalman Filtering method (Derivative-free nonlinear Kalman Filtering) is introduced. The proposed Kalman Filter is redesigned as disturbance observer for estimating additive input disturbances to the DFIG model. These estimated disturbance terms are finally used by a feedback controller that enables the generator’s state variables to track desirable setpoints. The efficiency of the proposed state estimation-based control scheme is tested through simulation experiments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4656498
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 30
social impact