In this paper we review some results on time-homogeneous birth-death processes. Specifically, for truncated birth-death processes with two absorbing or two reflecting endpoints, we recall the necessary and sufficient conditions on the transition rates such that the transition probabilities satisfy a spatial symmetry relation. The latter leads to simple expressions for first-passage-time densities and avoiding transition probabilities. This approach is thus thoroughly extended to the case of bilateral birth-death processes, even in the presence of catastrophes, and to the case of a two-dimensional birth-death process with constant rates.
A review on symmetry properties of birth-death processes
DI CRESCENZO, Antonio;MARTINUCCI, BARBARA
2015
Abstract
In this paper we review some results on time-homogeneous birth-death processes. Specifically, for truncated birth-death processes with two absorbing or two reflecting endpoints, we recall the necessary and sufficient conditions on the transition rates such that the transition probabilities satisfy a spatial symmetry relation. The latter leads to simple expressions for first-passage-time densities and avoiding transition probabilities. This approach is thus thoroughly extended to the case of bilateral birth-death processes, even in the presence of catastrophes, and to the case of a two-dimensional birth-death process with constant rates.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.