The energy production analysis of a system based on renewable technology depends on the inputs estimation accuracy. The solar energy is a free resource characterized by high variability; hence, its correct evaluation is a strategic factor for the feasibility of a solar system. In this paper a new methodological approach is presented in order to evaluate more accurately the electric and thermal energy production of a point-focus concentrating photovoltaic and thermal system (CPV/T). Two Artificial Neural Network (ANN) models for predicting solar global radiation and direct normal solar irradiance (DNI) are developed adopting different parameters such as climatic, astronomic and radiometric variables. In particular, a new combination of parameters is proposed in this paper and adopted first of all for the global radiation evaluation whose ANN model can be easily compared with the literature; the data are trained and tested by a multi layer perceptron (MLP). Hence, the results validation for the global solar radiation evaluation has encouraged to design an ANN model for the DNI by means of a similar variables set. The MLP network is trained, tested and validated for the hourly DNI estimation obtaining the MAPE, RMSE and R2 statistical indexes values respectively equal to 5.72%, 3.15% and 0.992. Finally, the electric and thermal outputs of a point-focus CPV/T system are evaluated varying the concentration factor and cells number, and adopting as input the DNI evaluation results obtained by the ANN model presented in this paper. The CPV/T system outputs are estimated referring to the city of Salerno (Italy) under different meteorological conditions.
Artificial neural network models for predicting the solar radiation as input of a concentrating photovoltaic system
RENNO, Carlo;PETITO, FABIO;GATTO, ANTONIO
2015-01-01
Abstract
The energy production analysis of a system based on renewable technology depends on the inputs estimation accuracy. The solar energy is a free resource characterized by high variability; hence, its correct evaluation is a strategic factor for the feasibility of a solar system. In this paper a new methodological approach is presented in order to evaluate more accurately the electric and thermal energy production of a point-focus concentrating photovoltaic and thermal system (CPV/T). Two Artificial Neural Network (ANN) models for predicting solar global radiation and direct normal solar irradiance (DNI) are developed adopting different parameters such as climatic, astronomic and radiometric variables. In particular, a new combination of parameters is proposed in this paper and adopted first of all for the global radiation evaluation whose ANN model can be easily compared with the literature; the data are trained and tested by a multi layer perceptron (MLP). Hence, the results validation for the global solar radiation evaluation has encouraged to design an ANN model for the DNI by means of a similar variables set. The MLP network is trained, tested and validated for the hourly DNI estimation obtaining the MAPE, RMSE and R2 statistical indexes values respectively equal to 5.72%, 3.15% and 0.992. Finally, the electric and thermal outputs of a point-focus CPV/T system are evaluated varying the concentration factor and cells number, and adopting as input the DNI evaluation results obtained by the ANN model presented in this paper. The CPV/T system outputs are estimated referring to the city of Salerno (Italy) under different meteorological conditions.File | Dimensione | Formato | |
---|---|---|---|
renno_1.pdf
non disponibili
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.76 MB
Formato
Adobe PDF
|
3.76 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
661 Renno Post-print.pdf
accesso aperto
Descrizione: 2015 Elsevier Ltd. All rights reserved. Link editore: https://www.sciencedirect.com/science/article/pii/S0196890415009553?via%3Dihub
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
773.11 kB
Formato
Adobe PDF
|
773.11 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.