A series of unknown 3-(alkyl(dialkyl)amino)benzofuro[2,3-f]quinazolin-1(2H)-ones 4-17 has been synthesized as new ellipticine analogs, in which the carbazole moiety and the pyridine ring were replaced by a dibenzofuran residue and a pyrimidine ring, respectively. The synthesis of these benzofuroquinazolinones 4-17 was performed in a simple one-pot reaction using 3-aminodibenzofuran or its 2-methoxy derivative, as starting materials. From 3-(dipropylamino)-5-methoxybenzofuro[2,3-f] quinazolin-1(2H)-one (13), we prepared 3-(dipropylamino)-5-hydroxybenzofuro[2,3-f]quinazolin-1(2H)-one (18), referred to as DPA-HBFQ-1. The cytotoxic activities of all the synthesized compounds, tested in different human breast cancer cell lines, revealed that DPA-HBFQ-1 was the most active compound. In particular, the latter was able to inhibit anchorage-dependent and-independent cell growth and to induce apoptosis in estrogen receptor alpha (ERα)-positive and-negative breast cancer cells. It did not affect proliferation and apoptotic responses in MCF-10A normal breast epithelial cells. The observed effects have been ascribed to an enhanced p21Cip1/WAF1 expression in a p53-dependent manner of tumor suppressor and to a selective inhibition of human topoisomerase II. In addition, DPA-HBFQ-1 exerted growth inhibitory effects also in other cancer cell lines, even though with a lower cytotoxic activity. Our results indicate DPA-HBFQ-1 as a good candidate to be useful as cancer therapeutic agent, particularly for breast cancer.
3-(Dipropylamino)-5-hydroxybenzofuro(2,3-f)quinazolin-1(2H)-one(DPA-HBFQ-1) plays as inhibitory role on breast cancer cell growth an progression.
SATURNINO, Carmela;
2016-01-01
Abstract
A series of unknown 3-(alkyl(dialkyl)amino)benzofuro[2,3-f]quinazolin-1(2H)-ones 4-17 has been synthesized as new ellipticine analogs, in which the carbazole moiety and the pyridine ring were replaced by a dibenzofuran residue and a pyrimidine ring, respectively. The synthesis of these benzofuroquinazolinones 4-17 was performed in a simple one-pot reaction using 3-aminodibenzofuran or its 2-methoxy derivative, as starting materials. From 3-(dipropylamino)-5-methoxybenzofuro[2,3-f] quinazolin-1(2H)-one (13), we prepared 3-(dipropylamino)-5-hydroxybenzofuro[2,3-f]quinazolin-1(2H)-one (18), referred to as DPA-HBFQ-1. The cytotoxic activities of all the synthesized compounds, tested in different human breast cancer cell lines, revealed that DPA-HBFQ-1 was the most active compound. In particular, the latter was able to inhibit anchorage-dependent and-independent cell growth and to induce apoptosis in estrogen receptor alpha (ERα)-positive and-negative breast cancer cells. It did not affect proliferation and apoptotic responses in MCF-10A normal breast epithelial cells. The observed effects have been ascribed to an enhanced p21Cip1/WAF1 expression in a p53-dependent manner of tumor suppressor and to a selective inhibition of human topoisomerase II. In addition, DPA-HBFQ-1 exerted growth inhibitory effects also in other cancer cell lines, even though with a lower cytotoxic activity. Our results indicate DPA-HBFQ-1 as a good candidate to be useful as cancer therapeutic agent, particularly for breast cancer.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.