In this paper a numerical-experimental procedure useful to numerically assess the fatigue performance of friction stir welded aluminium joints is presented. The impact of manufacturing residual stresses on crack propagation in the joint driven by a remote fatigue load can be predicted. The proposed sequential procedure starts with the experimental residual stress assessment by the contour method and proceeds through the multiple crack growth simulation by the Dual Boundary Element Method. In the frame of Linear Elastic Fracture Mechanics, the superposition principle is invoked to provide the mathematical foundation supporting the proposed modelling strategy. In order to validate the proposed procedure, simple specimens are fatigue tested, obtaining multiple crack propagation scenarios that are monitored, in order to compare experimental and predicted crack growth rates

Hybrid technique to assess the fatigue performance of multiple cracked FSW joints

CITARELLA, Roberto Guglielmo;CARLONE, PIERPAOLO;LEPORE, MARCELLO ANTONIO;SEPE, Raffaele
2016-01-01

Abstract

In this paper a numerical-experimental procedure useful to numerically assess the fatigue performance of friction stir welded aluminium joints is presented. The impact of manufacturing residual stresses on crack propagation in the joint driven by a remote fatigue load can be predicted. The proposed sequential procedure starts with the experimental residual stress assessment by the contour method and proceeds through the multiple crack growth simulation by the Dual Boundary Element Method. In the frame of Linear Elastic Fracture Mechanics, the superposition principle is invoked to provide the mathematical foundation supporting the proposed modelling strategy. In order to validate the proposed procedure, simple specimens are fatigue tested, obtaining multiple crack propagation scenarios that are monitored, in order to compare experimental and predicted crack growth rates
File in questo prodotto:
File Dimensione Formato  
106_carlone_preprint.pdf

accesso aperto

Descrizione: 0013-7944/Ó 2016 Elsevier Ltd. All rights reserved. ⇑ Corresponding author. E-mail address: rcitarella@unisa.it (R. Citarella). Engineering Fracture Mechanics 162 (2016) 38–50. Link editore: http://dx.doi.org/10.1016/j.engfracmech.2016.05.005
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri
106 Carlone Definitivo.pdf

non disponibili

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.03 MB
Formato Adobe PDF
4.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4667460
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 39
social impact