In this paper a numerical-experimental procedure useful to numerically assess the fatigue performance of friction stir welded aluminium joints is presented. The impact of manufacturing residual stresses on crack propagation in the joint driven by a remote fatigue load can be predicted. The proposed sequential procedure starts with the experimental residual stress assessment by the contour method and proceeds through the multiple crack growth simulation by the Dual Boundary Element Method. In the frame of Linear Elastic Fracture Mechanics, the superposition principle is invoked to provide the mathematical foundation supporting the proposed modelling strategy. In order to validate the proposed procedure, simple specimens are fatigue tested, obtaining multiple crack propagation scenarios that are monitored, in order to compare experimental and predicted crack growth rates
Hybrid technique to assess the fatigue performance of multiple cracked FSW joints
CITARELLA, Roberto Guglielmo;CARLONE, PIERPAOLO;LEPORE, MARCELLO ANTONIO;SEPE, Raffaele
2016
Abstract
In this paper a numerical-experimental procedure useful to numerically assess the fatigue performance of friction stir welded aluminium joints is presented. The impact of manufacturing residual stresses on crack propagation in the joint driven by a remote fatigue load can be predicted. The proposed sequential procedure starts with the experimental residual stress assessment by the contour method and proceeds through the multiple crack growth simulation by the Dual Boundary Element Method. In the frame of Linear Elastic Fracture Mechanics, the superposition principle is invoked to provide the mathematical foundation supporting the proposed modelling strategy. In order to validate the proposed procedure, simple specimens are fatigue tested, obtaining multiple crack propagation scenarios that are monitored, in order to compare experimental and predicted crack growth ratesFile | Dimensione | Formato | |
---|---|---|---|
106_carlone_preprint.pdf
accesso aperto
Descrizione: 0013-7944/Ó 2016 Elsevier Ltd. All rights reserved. ⇑ Corresponding author. E-mail address: rcitarella@unisa.it (R. Citarella). Engineering Fracture Mechanics 162 (2016) 38–50. Link editore: http://dx.doi.org/10.1016/j.engfracmech.2016.05.005
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri |
106 Carlone Definitivo.pdf
non disponibili
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.03 MB
Formato
Adobe PDF
|
4.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.