A generalization of the classical Coleman-Noll procedure for the exploitation of second law of thermodynamics in the presence of first-order non-local constitutive functions is proposed. The local balance of entropy is regarded as a differential inequality constrained by the governing equations for the set of the unknown fields as well as by their gradient extensions. The thermodynamic compatibility of such a class of materials is achieved without any modification of the basic thermodynamic laws. The results so obtained are applied to model nonlinear heat conduction in solids, in the presence of a dynamical semi-empirical temperature scale.
A generalized Coleman-Noll procedure for the exploitation of the entropy principle
SELLITTO, ANTONIO;
2010
Abstract
A generalization of the classical Coleman-Noll procedure for the exploitation of second law of thermodynamics in the presence of first-order non-local constitutive functions is proposed. The local balance of entropy is regarded as a differential inequality constrained by the governing equations for the set of the unknown fields as well as by their gradient extensions. The thermodynamic compatibility of such a class of materials is achieved without any modification of the basic thermodynamic laws. The results so obtained are applied to model nonlinear heat conduction in solids, in the presence of a dynamical semi-empirical temperature scale.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.