A robust approach to the design of an electromagnetic shield based on ultra-thin pyrolytic carbon (PyC, 5 ÷ 110 nm) films is proposed. Finite Element Method (FEM) simulations and Monte Carlo based tolerance analysis are used to show that even a deviation of 15 ÷ 20% from the nominal values of the most important design parameters of the PyC film, i.e. its thickness and sheet resistance, does not significantly affect the wanted level of electromagnetic interference shielding efficiency (EMI SE). The ranges of the SE show that EMI shield based on PyC film is characterized by a robust behavior with respect to the variation of such parameters due to the production processes. Therefore, since the PyC can be produced on a scalable basis, is chemically inert, significantly transparent in the visible range and can be deposited onto both metal and dielectric substrates, including flexible polymers, it may be appropriate for the highly demanding technological needs associated to the graphene revolution and can be developed from laboratory to mass production applications.

A robust approach to the design of an electromagnetic shield based on pyrolitic carbon

LAMBERTI, PATRIZIA;TUCCI, Vincenzo
2016-01-01

Abstract

A robust approach to the design of an electromagnetic shield based on ultra-thin pyrolytic carbon (PyC, 5 ÷ 110 nm) films is proposed. Finite Element Method (FEM) simulations and Monte Carlo based tolerance analysis are used to show that even a deviation of 15 ÷ 20% from the nominal values of the most important design parameters of the PyC film, i.e. its thickness and sheet resistance, does not significantly affect the wanted level of electromagnetic interference shielding efficiency (EMI SE). The ranges of the SE show that EMI shield based on PyC film is characterized by a robust behavior with respect to the variation of such parameters due to the production processes. Therefore, since the PyC can be produced on a scalable basis, is chemically inert, significantly transparent in the visible range and can be deposited onto both metal and dielectric substrates, including flexible polymers, it may be appropriate for the highly demanding technological needs associated to the graphene revolution and can be developed from laboratory to mass production applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4668653
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact