The paper focuses on Network Traffic Control based on aggregate traffic flow variables, aiming at signal settings which are consistent with within-day traffic flow dynamics. The proposed optimisation strategy is based on two successive steps: the first step refers to each single junction optimisation (green timings), the second to network coordination (offsets). Both of the optimisation problems are solved through meta-heuristic algorithms: the optimisation of green timings is carried out through a multi-criteria Genetic Algorithm whereas offset optimisation is achieved with the mono-criterion Hill Climbing algorithm. To guarantee proper queuing and spillback simulation, an advanced mesoscopic traffic flow model is embedded within the network optimisation method. The adopted mesoscopic traffic flow model also includes link horizontal queue modelling. The results attained through the proposed optimisation framework are compared with those obtained through benchmark tools.

Network traffic control based on a mesoscopic dynamic flow model

DI GANGI, MASSIMO;CANTARELLA, Giulio Erberto
;
DI PACE, ROBERTA;MEMOLI, SILVIO
2016

Abstract

The paper focuses on Network Traffic Control based on aggregate traffic flow variables, aiming at signal settings which are consistent with within-day traffic flow dynamics. The proposed optimisation strategy is based on two successive steps: the first step refers to each single junction optimisation (green timings), the second to network coordination (offsets). Both of the optimisation problems are solved through meta-heuristic algorithms: the optimisation of green timings is carried out through a multi-criteria Genetic Algorithm whereas offset optimisation is achieved with the mono-criterion Hill Climbing algorithm. To guarantee proper queuing and spillback simulation, an advanced mesoscopic traffic flow model is embedded within the network optimisation method. The adopted mesoscopic traffic flow model also includes link horizontal queue modelling. The results attained through the proposed optimisation framework are compared with those obtained through benchmark tools.
File in questo prodotto:
File Dimensione Formato  
preprint paper 1.pdf

accesso aperto

Descrizione: Post-Print
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4668833
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 27
social impact