We consider a class of spatio-temporal models which extend popular econometric spatial autoregressive panel data models by allowing the scalar coefficients for each location (or panel) different from each other. To overcome the innate endogeneity, we propose a generalized Yule–Walker estimation method which applies the least squares estimation to a Yule–Walker equation. The asymptotic theory is developed under the setting that both the sample size and the number of locations (or panels) tend to infinity under a general setting for stationary and αα-mixing processes, which includes spatial autoregressive panel data models driven by i.i.di.i.d. innovations as special cases. The proposed methods are illustrated using both simulated and real data.

Generalized Yule–Walker estimation for spatio-temporal models with unknown diagonal coefficients

PARRELLA, Maria Lucia;
2016

Abstract

We consider a class of spatio-temporal models which extend popular econometric spatial autoregressive panel data models by allowing the scalar coefficients for each location (or panel) different from each other. To overcome the innate endogeneity, we propose a generalized Yule–Walker estimation method which applies the least squares estimation to a Yule–Walker equation. The asymptotic theory is developed under the setting that both the sample size and the number of locations (or panels) tend to infinity under a general setting for stationary and αα-mixing processes, which includes spatial autoregressive panel data models driven by i.i.di.i.d. innovations as special cases. The proposed methods are illustrated using both simulated and real data.
File in questo prodotto:
File Dimensione Formato  
JoE2016.pdf

non disponibili

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: DRM non definito
Dimensione 870.94 kB
Formato Adobe PDF
870.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4670628
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact