Modified Gauss–Laguerre exponentially fitted quadrature rules are introduced for the computation of integrals of oscillatory functions over the whole positive semiaxis. Their weights and nodes depend on the frequency of oscillation in the integrand, thus increasing the accuracy of classical Gauss–Laguerre formulae. The asymptotic order is discussed, and an algorithm for determining weights and nodes for a general number N of nodes is provided, resulting an improvement of the existing quadrature formulae. Numerical illustrations are also presented.
Modified Gauss–Laguerre Exponential Fitting Based Formulae
CONTE, Dajana;PATERNOSTER, Beatrice
2016
Abstract
Modified Gauss–Laguerre exponentially fitted quadrature rules are introduced for the computation of integrals of oscillatory functions over the whole positive semiaxis. Their weights and nodes depend on the frequency of oscillation in the integrand, thus increasing the accuracy of classical Gauss–Laguerre formulae. The asymptotic order is discussed, and an algorithm for determining weights and nodes for a general number N of nodes is provided, resulting an improvement of the existing quadrature formulae. Numerical illustrations are also presented.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2016 POST PRINT Modified Gauss–Laguerre Exponential Fitting Based Formulae.pdf
Open Access dal 01/01/2018
Descrizione: Versione post print
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
341.43 kB
Formato
Adobe PDF
|
341.43 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.