The inspection of retinal fundus images allows medical doctors to diagnose various pathologies. Computer-aided diagnosis systems can be used to assist in this process. As a first step, such systems delineate the vessel tree from the background. We propose a method for the delineation of blood vessels in retinal images that is effective for vessels of different thickness. In the proposed method, we employ a set of B-COSFIRE filters selective for vessels and vessel-endings. Such a set is determined in an automatic selection process and can adapt to different applications. We compare the performance of different selection methods based upon machine learning and information theory. The results that we achieve by performing experiments on two public benchmark data sets, namely DRIVE and STARE, demonstrate the effectiveness of the proposed approach.

Supervised vessel delineation in retinal fundus images with the automatic selection of B-COSFIRE filters

STRISCIUGLIO, NICOLA;VENTO, Mario;
2016-01-01

Abstract

The inspection of retinal fundus images allows medical doctors to diagnose various pathologies. Computer-aided diagnosis systems can be used to assist in this process. As a first step, such systems delineate the vessel tree from the background. We propose a method for the delineation of blood vessels in retinal images that is effective for vessels of different thickness. In the proposed method, we employ a set of B-COSFIRE filters selective for vessels and vessel-endings. Such a set is determined in an automatic selection process and can adapt to different applications. We compare the performance of different selection methods based upon machine learning and information theory. The results that we achieve by performing experiments on two public benchmark data sets, namely DRIVE and STARE, demonstrate the effectiveness of the proposed approach.
File in questo prodotto:
File Dimensione Formato  
Strisciuglio2016_Article_SupervisedVesselDelineationInR.pdf

accesso aperto

Descrizione: Final version
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4671669
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 51
social impact