Heavy metals (HMs) are one of the major ecological problem related to human activities. Phytoremediation is a promising "green technology" for soil and water reclamation, and it can be improved by means of the use of chelants. In the past particular attention was paid on the effects of HMs and/or chelants on plant health, but much less on their effects on rhizosphere communities. To shed light on the interaction among plant-HM-chelant-rhizobacterial community a pot experiment was set up. Maize plants were grown on uncontaminated, multi-metal (copper and zinc) contaminated and chelants artificially amended soils. A high concentration of HMs was detected in the different maize organs; chelants improved the accumulation capacity of the maize plants. The rhizosphere bacterial community isolated from control plants showed the largest biodiversity in terms of bacterial genera. However, the addition of HMs reduced the number of taxa to three: Bacillus, Lysinibacillus and Pseudomonas. The effects of HM treatment were counteracted by the addition of chelants in terms of the genetic biodiversity. Furthermore, several bacterial strains particularly resistant to HMs and chelants were isolated and selected. Our study suggests that the combined use of resistant bacteria and chelants could improve the phytoremediation capacity of maize.

Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize

VIGLIOTTA, GIOVANNI;MATRELLA, SIMONA;CICATELLI, ANGELA;GUARINO, FRANCESCO;CASTIGLIONE, Stefano
2016-01-01

Abstract

Heavy metals (HMs) are one of the major ecological problem related to human activities. Phytoremediation is a promising "green technology" for soil and water reclamation, and it can be improved by means of the use of chelants. In the past particular attention was paid on the effects of HMs and/or chelants on plant health, but much less on their effects on rhizosphere communities. To shed light on the interaction among plant-HM-chelant-rhizobacterial community a pot experiment was set up. Maize plants were grown on uncontaminated, multi-metal (copper and zinc) contaminated and chelants artificially amended soils. A high concentration of HMs was detected in the different maize organs; chelants improved the accumulation capacity of the maize plants. The rhizosphere bacterial community isolated from control plants showed the largest biodiversity in terms of bacterial genera. However, the addition of HMs reduced the number of taxa to three: Bacillus, Lysinibacillus and Pseudomonas. The effects of HM treatment were counteracted by the addition of chelants in terms of the genetic biodiversity. Furthermore, several bacterial strains particularly resistant to HMs and chelants were isolated and selected. Our study suggests that the combined use of resistant bacteria and chelants could improve the phytoremediation capacity of maize.
File in questo prodotto:
File Dimensione Formato  
JEMA-S-15-00412 submitted 06.02 with DOI.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4672352
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 51
social impact