For the first time, a full analytical model of the electric field in the gate oxide of 4H-polytype silicon carbide (4H-SiC) power double-implanted MOSFET devices is shown. It takes into account all the relevant physical and geometrical parameters of the device and avoids the use of any fitting parameters. To validate the results of the full-analytical model, comparisons with numerical simulations are reported for device structures having different values of the drift doping concentration and drift thickness as well as of the junction FET (JFET)-region width. Moreover, because the model equations are in closed form, they can be used to derive an adequate JFET-region geometry by fixing the maximum electric field in the oxide and the maximum blocking voltage for a given drift region.

A Model of Electric Field Distribution in Gate Oxide and JFET-Region of 4H-SiC DMOSFETs

DI BENEDETTO, LUIGI;LICCIARDO, GIAN DOMENICO;LIGUORI, ROSALBA;RUBINO, Alfredo
2016-01-01

Abstract

For the first time, a full analytical model of the electric field in the gate oxide of 4H-polytype silicon carbide (4H-SiC) power double-implanted MOSFET devices is shown. It takes into account all the relevant physical and geometrical parameters of the device and avoids the use of any fitting parameters. To validate the results of the full-analytical model, comparisons with numerical simulations are reported for device structures having different values of the drift doping concentration and drift thickness as well as of the junction FET (JFET)-region width. Moreover, because the model equations are in closed form, they can be used to derive an adequate JFET-region geometry by fixing the maximum electric field in the oxide and the maximum blocking voltage for a given drift region.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4674255
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 25
social impact