Motivated by the experimental results of the paper [1] and unlike the general theories of shape memory alloys (SMAs), in this paper we suggest for such materials a phase field model by a second order phase transition. So that, with this new system we obtain a simulation of phase dynamics very convenient to describe the natural behavior of these materials. The differential system is governed by the motion equation, the heat equation and the Ginzburg-Landau (GL) equation and by a constitutive law between the phase field, the temperature, the strain and the stress. The use of this new model is characterized by new potentials of the GL equation and by a new dependence on the temperature in the constitutive equation. Using this new model, we obtain simulations in better agreement with experimental data and respect to previous work [2].
A shape memory alloy model by a second order phase transition
FABRIZIO, MAURO;PECORARO, MASSIMO;TIBULLO, VINCENZO
2016-01-01
Abstract
Motivated by the experimental results of the paper [1] and unlike the general theories of shape memory alloys (SMAs), in this paper we suggest for such materials a phase field model by a second order phase transition. So that, with this new system we obtain a simulation of phase dynamics very convenient to describe the natural behavior of these materials. The differential system is governed by the motion equation, the heat equation and the Ginzburg-Landau (GL) equation and by a constitutive law between the phase field, the temperature, the strain and the stress. The use of this new model is characterized by new potentials of the GL equation and by a new dependence on the temperature in the constitutive equation. Using this new model, we obtain simulations in better agreement with experimental data and respect to previous work [2].I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.