The hole mobility of a semiconducting film with a new type of small molecule has been determined by electrical characterization with two different device geometries. The small molecule, namely Zn(OC)2, consists of oxadiazole groups (O), that act as electron conductor and blue emitter, and carbazole groups (C), that are hole conductors, which are arranged around a central Zn-atom. This disordered organic material has in principal ambipolar conduction properties. In both the organic devices investigated, that is, a vertical diode and a bottom-gate organic field effect transistor, the transport is dominated by holes. In the diode structure, the charge carrier transport shows a dependence from the electric field with a space charge limited current characteristic. The hole mobility value is several orders of magnitude higher as compared to the one extracted from the characteristics of the organic transistor. This large difference in the charge carrier transport properties for the two different device configurations is due to the strong influence of the dielectric/semiconductor interface which degrades the hole transport in the organic field effect transistor.
Hole-mobility limits for the Zn(OC)2 organic semiconductor obtained by SCLC and field-effect measurements
LANDI, GIOVANNI;NEITZERT, Heinrich Christoph
2016
Abstract
The hole mobility of a semiconducting film with a new type of small molecule has been determined by electrical characterization with two different device geometries. The small molecule, namely Zn(OC)2, consists of oxadiazole groups (O), that act as electron conductor and blue emitter, and carbazole groups (C), that are hole conductors, which are arranged around a central Zn-atom. This disordered organic material has in principal ambipolar conduction properties. In both the organic devices investigated, that is, a vertical diode and a bottom-gate organic field effect transistor, the transport is dominated by holes. In the diode structure, the charge carrier transport shows a dependence from the electric field with a space charge limited current characteristic. The hole mobility value is several orders of magnitude higher as compared to the one extracted from the characteristics of the organic transistor. This large difference in the charge carrier transport properties for the two different device configurations is due to the strong influence of the dielectric/semiconductor interface which degrades the hole transport in the organic field effect transistor.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.