We evaluated the effects of synthetic peptides (2017, 2019, 2020, 2021, 2023, 2027, 2029, 2030, 2031, and 2035) encompassing the structure of HIV-1MN envelope gp41 on both chemotaxis of human basophils and the release of preformed mediators (histamine) and of cytokines (IL-13). Peptides 2019 and 2021 were potent basophil chemoattractants, whereas the other peptides examined were ineffective. Preincubation of basophils with FMLP or gp41 2019 resulted in complete desensitization to a subsequent challenge with homologous stimulus. Incubation of basophils with low concentration (5 x 10-7 M) of FMLP, which binds with high affinity to N-formyl peptide receptor (FPR), but not to FPR-like 1, did not affect the chemotactic response to a heterologous stimulus (gp41 2019). In contrast, a high concentration (10-4 M) of FMLP, which binds also to FPR-like 1, significantly reduced the chemotactic response to gp41 2019. The FPR antagonist cyclosporin H inhibited chemotaxis induced by FMLP, but not by gp41 2019. None of these peptides singly induced the release of histamine or cytokines (IL-4 and IL-13) from basophils. However, low concentrations of peptides 2019 and 2021 (10-8-10-6 M) inhibited histamine release from basophils challenged with FMLP but not the secretion caused by anti-IgE and gp120. Preincubation of basophils with peptides 2019 and 2021 inhibited the expression of both IL-13 mRNA, and the FMLP-induced release of IL-13 from basophils. These data highlight the complexity of the interactions between viral and bacterial peptides with FPR subtypes on human basophils.

HIV-1 envelope gp41 peptides promote migration of human FcεRI+ cells and inhibit IL-13 synthesis through interaction with formyl peptide receptors

TRIGGIANI, MASSIMO;
2002-01-01

Abstract

We evaluated the effects of synthetic peptides (2017, 2019, 2020, 2021, 2023, 2027, 2029, 2030, 2031, and 2035) encompassing the structure of HIV-1MN envelope gp41 on both chemotaxis of human basophils and the release of preformed mediators (histamine) and of cytokines (IL-13). Peptides 2019 and 2021 were potent basophil chemoattractants, whereas the other peptides examined were ineffective. Preincubation of basophils with FMLP or gp41 2019 resulted in complete desensitization to a subsequent challenge with homologous stimulus. Incubation of basophils with low concentration (5 x 10-7 M) of FMLP, which binds with high affinity to N-formyl peptide receptor (FPR), but not to FPR-like 1, did not affect the chemotactic response to a heterologous stimulus (gp41 2019). In contrast, a high concentration (10-4 M) of FMLP, which binds also to FPR-like 1, significantly reduced the chemotactic response to gp41 2019. The FPR antagonist cyclosporin H inhibited chemotaxis induced by FMLP, but not by gp41 2019. None of these peptides singly induced the release of histamine or cytokines (IL-4 and IL-13) from basophils. However, low concentrations of peptides 2019 and 2021 (10-8-10-6 M) inhibited histamine release from basophils challenged with FMLP but not the secretion caused by anti-IgE and gp120. Preincubation of basophils with peptides 2019 and 2021 inhibited the expression of both IL-13 mRNA, and the FMLP-induced release of IL-13 from basophils. These data highlight the complexity of the interactions between viral and bacterial peptides with FPR subtypes on human basophils.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4676164
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 28
social impact