Polymer composites attract large attention for their industrial use because of their unique features. The preparation of equilibrated melts of long entangled chains in the presence of a solid nanoparticle in molecular dynamics simulations is a very difficult task due to the slow relaxation time. We present a coarse-grained (CG) model suitable for polymer nanocomposites which combines Iterative-Boltzmann-Inversion derived polymer models, the hybrid particle-field representation of non-bonded interactions, and a convenient description of a solid nanoparticle suitable for hybrid particle-field models. The proposed approach is applied to test simulations of well characterized polystyrene-silica nanocomposites models. Finally, procedures for an efficient relaxation of pure polymer melts and interphase structures of large molecular weight nanocomposites are proposed.

Fast relaxation of coarse-grained models of polymer interphases by hybrid particle-field molecular dynamics: Polystyrene-silica nanocomposites as an example

DE NICOLA, ANTONIO;MILANO, Giuseppe
2016-01-01

Abstract

Polymer composites attract large attention for their industrial use because of their unique features. The preparation of equilibrated melts of long entangled chains in the presence of a solid nanoparticle in molecular dynamics simulations is a very difficult task due to the slow relaxation time. We present a coarse-grained (CG) model suitable for polymer nanocomposites which combines Iterative-Boltzmann-Inversion derived polymer models, the hybrid particle-field representation of non-bonded interactions, and a convenient description of a solid nanoparticle suitable for hybrid particle-field models. The proposed approach is applied to test simulations of well characterized polystyrene-silica nanocomposites models. Finally, procedures for an efficient relaxation of pure polymer melts and interphase structures of large molecular weight nanocomposites are proposed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4676259
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact