A group in which all cyclic subgroups are 2-subnormal is called a 2-Baer group. The topic of this paper are generalized 2-Baer groups, i.e., groups in which the non-2-subnormal cyclic subgroups generate a proper subgroup of the group. If this subgroup is non-trivial, the group is called a generalized T2-group. In particular, we provide structure results for such groups, investigate their nilpotency class, and construct examples of finite p-groups which are generalized T2-groups.
A generalization of 2-Baer groups
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
TORTORA, ANTONIO
	
		
		
	
			2017
Abstract
A group in which all cyclic subgroups are 2-subnormal is called a 2-Baer group. The topic of this paper are generalized 2-Baer groups, i.e., groups in which the non-2-subnormal cyclic subgroups generate a proper subgroup of the group. If this subgroup is non-trivial, the group is called a generalized T2-group. In particular, we provide structure results for such groups, investigate their nilpotency class, and construct examples of finite p-groups which are generalized T2-groups.File in questo prodotto:
	
	
	
    
	
	
	
	
	
	
	
	
		
			
				
			
		
		
	
	
	
	
		
			Non ci sono file associati a questo prodotto.
		
		
	
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


