A group in which all cyclic subgroups are 2-subnormal is called a 2-Baer group. The topic of this paper are generalized 2-Baer groups, i.e., groups in which the non-2-subnormal cyclic subgroups generate a proper subgroup of the group. If this subgroup is non-trivial, the group is called a generalized T2-group. In particular, we provide structure results for such groups, investigate their nilpotency class, and construct examples of finite p-groups which are generalized T2-groups.
A generalization of 2-Baer groups
TORTORA, ANTONIO
2017-01-01
Abstract
A group in which all cyclic subgroups are 2-subnormal is called a 2-Baer group. The topic of this paper are generalized 2-Baer groups, i.e., groups in which the non-2-subnormal cyclic subgroups generate a proper subgroup of the group. If this subgroup is non-trivial, the group is called a generalized T2-group. In particular, we provide structure results for such groups, investigate their nilpotency class, and construct examples of finite p-groups which are generalized T2-groups.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.