A group in which all cyclic subgroups are 2-subnormal is called a 2-Baer group. The topic of this paper are generalized 2-Baer groups, i.e., groups in which the non-2-subnormal cyclic subgroups generate a proper subgroup of the group. If this subgroup is non-trivial, the group is called a generalized T2-group. In particular, we provide structure results for such groups, investigate their nilpotency class, and construct examples of finite p-groups which are generalized T2-groups.

A generalization of 2-Baer groups

TORTORA, ANTONIO
2017-01-01

Abstract

A group in which all cyclic subgroups are 2-subnormal is called a 2-Baer group. The topic of this paper are generalized 2-Baer groups, i.e., groups in which the non-2-subnormal cyclic subgroups generate a proper subgroup of the group. If this subgroup is non-trivial, the group is called a generalized T2-group. In particular, we provide structure results for such groups, investigate their nilpotency class, and construct examples of finite p-groups which are generalized T2-groups.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4676318
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact