The paper is devoted to the numerical solution of advection–diffusion problems of Boussinesq type, by means of adapted numerical methods. The adaptation occurs at two levels: along space, by suitably semidiscretizing the spatial derivatives through finite differences based on exponential fitting; along time integration, through an adapted IMEX method based on exponential fitting itself. Stability analysis is provided and numerical examples showing the effectiveness of the approach, also in comparison with the classical one, are given.

Exponentially fitted IMEX methods for advection–diffusion problems

CARDONE, Angelamaria;D'AMBROSIO, RAFFAELE
;
PATERNOSTER, Beatrice
2017

Abstract

The paper is devoted to the numerical solution of advection–diffusion problems of Boussinesq type, by means of adapted numerical methods. The adaptation occurs at two levels: along space, by suitably semidiscretizing the spatial derivatives through finite differences based on exponential fitting; along time integration, through an adapted IMEX method based on exponential fitting itself. Stability analysis is provided and numerical examples showing the effectiveness of the approach, also in comparison with the classical one, are given.
File in questo prodotto:
File Dimensione Formato  
ef IMEX post-print.pdf

embargo fino al 15/11/2018

Descrizione: articolo post-print
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 914.32 kB
Formato Adobe PDF
914.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4677086
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 17
social impact