In this work we consider an optimal design problem for two-component fractured media for which a macroscopic strain is prescribed. Within the framework of structured deformations, we derive an integral representation for the relaxed energy functional. We start from an energy functional accounting for bulk and surface contributions coming from both constituents of the material; the relaxed energy densities, obtained via a blow-up method, are determined by a delicate interplay between the optimization of sharp interfaces and the diffusion of microcracks. This model has the far-reaching perspective to incorporate elements of plasticity in optimal design of composite media.

Optimal Design of Fractured Media with Prescribed Macroscopic Strain

ZAPPALE, ELVIRA
2017-01-01

Abstract

In this work we consider an optimal design problem for two-component fractured media for which a macroscopic strain is prescribed. Within the framework of structured deformations, we derive an integral representation for the relaxed energy functional. We start from an energy functional accounting for bulk and surface contributions coming from both constituents of the material; the relaxed energy densities, obtained via a blow-up method, are determined by a delicate interplay between the optimization of sharp interfaces and the diffusion of microcracks. This model has the far-reaching perspective to incorporate elements of plasticity in optimal design of composite media.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4678532
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact