In this study, hypromellose acetate succinate (HPMCAS) stable submicronic particles loaded with a soy isoflavones extract have been obtained by nano spray drying technology. HPMCAS has been used as excipient able to increase both stability and supersaturation levels of the active ingredients hence able to enhance skin penetration performance of genistein and daidzein. The influence of polymer/extract ratio as other process variables, on particle size, morphology and permeation performance, have been investigated. Particles in submicronic range (mean size around 550 nm) and narrow size distribution with high encapsulation efficiency (up to 86%) were obtained. HPMCAS was able to improve amorphization of genistein during the atomization process and avoid recrystallization during storage, even in harsh environmental condition. Moreover, the enhanced affinity of the optimized formulations with aqueous media, strongly increased isoflavones penetration through membrane with diffusive properties well-correlated to human skin, up to 10-fold higher than pure soy isoflavones extract raw material.

Submicrometric hypromellose acetate succinate particles as carrier for soy isoflavones extract with improved skin penetration performance

DEL GAUDIO, Pasquale;RUSSO, Paola;RODRIGUEZ DORADO, ROSALIA;SANSONE, Francesca;MENCHERINI, Teresa;GASPARRI, FRANCO;AQUINO, Rita Patrizia
2017-01-01

Abstract

In this study, hypromellose acetate succinate (HPMCAS) stable submicronic particles loaded with a soy isoflavones extract have been obtained by nano spray drying technology. HPMCAS has been used as excipient able to increase both stability and supersaturation levels of the active ingredients hence able to enhance skin penetration performance of genistein and daidzein. The influence of polymer/extract ratio as other process variables, on particle size, morphology and permeation performance, have been investigated. Particles in submicronic range (mean size around 550 nm) and narrow size distribution with high encapsulation efficiency (up to 86%) were obtained. HPMCAS was able to improve amorphization of genistein during the atomization process and avoid recrystallization during storage, even in harsh environmental condition. Moreover, the enhanced affinity of the optimized formulations with aqueous media, strongly increased isoflavones penetration through membrane with diffusive properties well-correlated to human skin, up to 10-fold higher than pure soy isoflavones extract raw material.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4679625
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact