A splitting implicit-explicit (SIMEX) scheme for solving a partial integro-differential Fokker–Planck equation related to a jump-diffusion process is investigated. This scheme combines the Chang–Cooper method for spatial discretization with the Strang–Marchuk splitting and first- and second-order time discretization methods. It is proved that the SIMEX scheme is second-order accurate, positive preserving, and conservative. Results of numerical experiments that validate the theoretical results are presented.

Analysis of splitting methods for solving a partial integro-differential Fokker–Planck equation

ANNUNZIATO, Mario;
2017-01-01

Abstract

A splitting implicit-explicit (SIMEX) scheme for solving a partial integro-differential Fokker–Planck equation related to a jump-diffusion process is investigated. This scheme combines the Chang–Cooper method for spatial discretization with the Strang–Marchuk splitting and first- and second-order time discretization methods. It is proved that the SIMEX scheme is second-order accurate, positive preserving, and conservative. Results of numerical experiments that validate the theoretical results are presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4679697
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact