Clustering methods for time series have been widely studied and applied within a range of different fields. They are generally based on the choice of a relevant metric. The aim of this paper is to propose and discuss a clustering technique in the frequency domain for stationary time series. The idea of the new procedure consists in analyzing the discrete component of the spectrum, avoiding the introduction of any metric for the classification of the time series. The novel technique is suitable for time series that show strong periodic components and is based on an efficient algorithm requiring less computational and memory resources, making it appropriate for large and complex temporal databases. The problem of the selection of the optimal partition is also addressed along with a proposal that takes into account the stability of the clusters and the efficiency of the procedure in classifying the time series among the different groups. The results of a simulation study show the relative merits of the proposed procedure compared to other spectral-based approaches. An application to a large time-series database provided by a big electric company is also discussed. The application showed the good performance of the proposed technique, which was able to classify the time series in a few groups of customers with homogeneous electricity demand patterns.

Clustering complex time-series databases by using periodic components

GIORDANO, Francesco;LA ROCCA, Michele;PARRELLA, Maria Lucia
2017

Abstract

Clustering methods for time series have been widely studied and applied within a range of different fields. They are generally based on the choice of a relevant metric. The aim of this paper is to propose and discuss a clustering technique in the frequency domain for stationary time series. The idea of the new procedure consists in analyzing the discrete component of the spectrum, avoiding the introduction of any metric for the classification of the time series. The novel technique is suitable for time series that show strong periodic components and is based on an efficient algorithm requiring less computational and memory resources, making it appropriate for large and complex temporal databases. The problem of the selection of the optimal partition is also addressed along with a proposal that takes into account the stability of the clusters and the efficiency of the procedure in classifying the time series among the different groups. The results of a simulation study show the relative merits of the proposed procedure compared to other spectral-based approaches. An application to a large time-series database provided by a big electric company is also discussed. The application showed the good performance of the proposed technique, which was able to classify the time series in a few groups of customers with homogeneous electricity demand patterns.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4681258
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact