Nowadays, the refrigeration is responsible of about 15% of the overall energy consumption all over the world. Actually most of the refrigerant fluids working in vapor compression plants (VCPs) are environmentally harmful, since they presents high GWP (Global Warming Potential), which leads to a substantial warming of both earth surface and atmosphere. Electrocaloric refrigeration (ER) is an innovative, emerging refrigeration technique based on solid state refrigerant that shows a great potential. It fits in the context of environment-friendly refrigeration systems, whom are spreading increasingly to replace VCPs. ER is founded on electrocaloric effect that is a physical phenomenon found in materials with dielectric properties, electrocaloric materials. The thermodynamical cycle that best is addressed to the electrocaloric refrigeration is Active Electrocaloric Regeneration cycle (AER) that consists of two adiabatic and two isofield stages. The core of an electrocaloric refrigerator is the regenerator whom operates both as refrigerant and regenerator in an AER cycle. In this paper, we compare the energetic performance of a commercial R134a refrigeration plant to that of an electrocaloric refrigerator working with an AER cycle. The comparison is performed in term of TEWI index (Total Equivalent Warming Impact) that includes both direct and indirect contributions to global warming.

Electrocaloric refrigeration: An innovative, emerging, eco-friendly refrigeration technique

APREA, Ciro;MAIORINO, ANGELO;MASSELLI, CLAUDIA
2017-01-01

Abstract

Nowadays, the refrigeration is responsible of about 15% of the overall energy consumption all over the world. Actually most of the refrigerant fluids working in vapor compression plants (VCPs) are environmentally harmful, since they presents high GWP (Global Warming Potential), which leads to a substantial warming of both earth surface and atmosphere. Electrocaloric refrigeration (ER) is an innovative, emerging refrigeration technique based on solid state refrigerant that shows a great potential. It fits in the context of environment-friendly refrigeration systems, whom are spreading increasingly to replace VCPs. ER is founded on electrocaloric effect that is a physical phenomenon found in materials with dielectric properties, electrocaloric materials. The thermodynamical cycle that best is addressed to the electrocaloric refrigeration is Active Electrocaloric Regeneration cycle (AER) that consists of two adiabatic and two isofield stages. The core of an electrocaloric refrigerator is the regenerator whom operates both as refrigerant and regenerator in an AER cycle. In this paper, we compare the energetic performance of a commercial R134a refrigeration plant to that of an electrocaloric refrigerator working with an AER cycle. The comparison is performed in term of TEWI index (Total Equivalent Warming Impact) that includes both direct and indirect contributions to global warming.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4682842
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 22
social impact